Frequency-dependent associative long-term potentiation at the hippocampal mossy fiber-CA3 synapse.
نویسندگان
چکیده
The mossy fiber-CA3 synapse displays an N-methyl-D-aspartate-receptor-independent mu-opioid-receptor-dependent form of long-term potentiation (LTP) that is thought not to display cooperativity or associativity with coactive afferents. However, because mossy fiber LTP requires repetitive synaptic activity for its induction, we reevaluated cooperativity and associativity at this synapse by using trains of mossy fiber stimulation. Moderate-, but not low-, intensity trains induced mossy fiber LTP, indicating cooperativity. Low-intensity mossy fiber trains that were normally ineffective in inducing LTP could induce mossy fiber LTP when delivered in conjunction with trains delivered to commissural-CA3 afferents. Associative mossy fiber LTP also could be induced with single mossy fiber pulses when delivered with commissural trains in the presence of a mu-opioid-receptor agonist. Our findings suggest a frequency-dependent variation of Hebbian associative LTP induction that is regulated by the release of endogenous opioid peptides.
منابع مشابه
Commissural synapses, but not mossy fiber synapses, in hippocampal field CA3 exhibit associative long-term potentiation and depression.
When CA3 commissural afferents received low-frequency (weak) stimuli synchronized with a train of mossy fiber bursts (strong), associative long-term potentiation (LTP) was induced at mixed commissural and associational synapses on hippocampal CA3 pyramidal cells in vitro. In contrast, a weak mossy fiber input did not potentiate when given in phase with commissural/associational bursts. Furtherm...
متن کاملInduction of hebbian and non-hebbian mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation.
The synapse made by hippocampal mossy fibers onto pyramidal neurons of hippocampal area CA3 displays a form of long-term potentiation (LTP) that is independent of the activation of NMDA receptors. Considerable controversy exists as to whether the induction of mossy fiber LTP requires postsynaptic activation and, thus, whether mossy fiber LTP is Hebbian or non-Hebbian. Here we report the inducti...
متن کاملPTP and LTP at a hippocampal mossy fiber-interneuron synapse.
The mossy fiber-CA3 pyramidal neuron synapse is a main component of the hippocampal trisynaptic circuitry. Recent studies, however, suggested that inhibitory interneurons are the major targets of the mossy fiber system. To study the regulation of mossy fiber-interneuron excitation, we examined unitary and compound excitatory postsynaptic currents in dentate gyrus basket cells, evoked by paired ...
متن کاملLong-Term Potentiation Selectively Expressed by NMDA Receptors at Hippocampal Mossy Fiber Synapses
The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP that is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this "classical" LTP, mf-CA3 synapses can undergo a form ...
متن کاملShort- and long-term plasticity of the perforant path synapse in hippocampal area CA3.
The direct perforant path (PP) projection to CA3 is a major source of cortical input to the hippocampal region, yet relatively little is known about the basic properties of physiology and plasticity in this pathway. We tested whether PP long-term potentiation (LTP) in CA3 possesses the Hebbian property of associativity; i.e., whether the firing of fibers of different orders can induce PP LTP. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 91 22 شماره
صفحات -
تاریخ انتشار 1994